Experiment 1: Mass, Volume, and Density Data Tables

	Version 2	
Name:		Date:

Lab Partner: _____

Remember to include units of measure with each entry, and to read and record each measurement to the full precision allowed by the instrument used. Make sure that your work is neat and legible so that you may communicate your results to others such as your instructor.

Section: _____

Data Table 1. Reading Common Glassware.

	10 mL grad. cylinder	50 mL grad. cylinder	buret
Known Readings			
Unknown Readings	10 mL grad. cylinder	50 mL grad. cylinder	buret
Unk. # (if given)			

Data Table 2. Measuring Volume with a Volumetric Pipet.

Mass of flask 1						
Mass of flask $1 + H_2O$						
Mass of H_2O	0.000 g					
Total Volume of H ₂ O	0.00 mL	10.00 mL	20.00 mL	30.00 mL	40.00 mL	50.00 mL
Density of H ₂ O						
Mean of Density						
Standard Deviation						

(Note: the clear cells should contain your data; the shaded cells will contain calculated values.)

Data Table 3. Measuring Volume with a Graduated Cylinder.

Mass of flask 2						
Mass of flask 2+H ₂ O						
Mass of H_2O	0.000 g					
Total Volume H ₂ O (check the sig figs of your graduated cylinder)	0.0 mL	10.0 mL	20.0 mL	30.0 mL	40.0 mL	50.0 mL
Density of H_2O						
Mean of Density						
Standard Deviation						

Show your work for one example of each type of calculation in Data Tables 2/3:

Data Table 4. Temperature and Pressure Measurements.

Barometric Pressure	
Water Temperature	
Density from <u>Appendix 1</u>	

- Using the mass and volume data obtained for each flask (from Data Table 2 and Data Table 3), use Excel to plot two mass (y-axis) versus volume (x-axis) scatter plots (see <u>Appendix 7 Using Excel</u>).
 - Add a trend line for each plot; the slope of each line will be the density. Make sure to include the line equation and the coefficient of determination (R-squared value).
 - You can place both lines on the same plot. Make sure to use a legend to label each line.
 - Add a title to the plot.
 - Print the Excel plot, and include it in your lab report.
 - Use the slope of each line to fill in the density in Data Table 5. Use the accepted value for density from <u>Appendix 1</u> (Data Table 4) to calculate the relative percent error.

Data Table 5. Relative Percent Error for the Density of Water.

	Density from Excel Plot	Rel. % Error
Flask 1 (using pipet)		
Flask 2 (using graduated cylinder)		

Show your work for one example of each calculation:

Unknowns	Observations	Mass	Volume	Density	Identity
example object	clear, colorless flake	0.2790 g	too small to measure by ruler or dísplacement	 floats on water sínks ín sol'n 3 densíty must be between 0.945 and 1.00 g/mL 	HDPE
Object 1					
Object 2					
Object 3					
Object 4					
Object 5					

Data Table 6. Density and Identity of Unknown Plastics in Set Number

Show your work for one example of each type of calculation:

.

Post-lab

- 1. Instruments that were used to measure volume included a graduated cylinder, a volumetric pipet, and a buret, whereas a beaker does not provide volume with any reasonable certainty. Provide one explanation as to why this is true.
- 2. Among the two instruments that you used to measure density of water in Data Table 2 and Data Table 3, which one was most accurate? Most precise? What in the data supports your argument?
- 3. Which method, average or graph, was more accurate in determining the density of water?
- 4. Which has a greater effect on density of water: temperature or pressure? How do you know?
- 5. Briefly explain a process for how you would scale up your density technique to sort a whole batch of mixed plastics for recycling.
- 6. Conclusions: Once you have completed your experiment, you will need to prepare a report (see <u>Appendix 6 How to Write a Lab Notebook</u>). Your report should be less than 5 pages, be clear and readable to the instructor and anyone that would need your data, and include:

Title and lab partner names

Purpose

Any diagrams, figures, or tables with your lab data (units and significant figures are important, remember your Excel graph too)

Calculations (include one example calculation for each type)

Post-lab questions

Conclusions (see <u>Appendix 9 How to Write a Scientific Conclusion</u>: What concept were you investigating and how does it relate to the experimental procedure? How did you go about your work and why? This is **not** the details of your procedure repeated again, but discussion of the processes. For example, describe the methods for finding volume of the unknown objects. What is your conclusion for each part? Use the values you obtain as evidence in your reasoning. Statements like, "see data table for values" are not acceptable! Discuss the validity and reliability of your data in answering the question. Clearly state the identity of each unknown plastic.)

This page was intentionally left blank

Experiment 2: **Empirical Formulas**

Name:	Date:		
Lab Partner:		Section:	
Table 1. Empirical formula of the Produc	t of the Reaction of Mg	with O_2	
	Trial 1*	Trial 2	
mass of lid			
mass of crucible + lid			
mass of crucible + lid + Mg			
mass of Mg			
moles of Mg			
mass of burned Mg product + lid + crucible			
1 st mass recording after heating			
2 nd mass recording after heating			
3 rd mass recording after heating (if needed)			
mass of oxygen			
moles of oxygen			
formula of the magnesium oxide			

*Show calculations for trial 1.

	Trial 1*	Trial 2
mass of evaporating dish		
mass of evaporating dish + $CuCl_2 \cdot nH_2O$		
mass of copper(II) chloride hydrate		
mass of copper(II) chloride + evaporating c	lish (after heating) (g)	
1 st mass recording after heating		
2 nd mass recording after heating		
3 rd mass recording after heating (if needed)		
mass of H ₂ O		
moles of H ₂ O		
mass of anhydrous $CuCl_2$		
moles of CuCl ₂		
formula of the copper(II) chloride hydrate		
*Show calculations for trial 1.		

Table 2. Empirical Formula of a Copper Hydrate

Name	

This page was intentionally left blank

Experiment 3: Electrolytes and Nonelectrolytes

	Version 3		
Name:		_ Date:	
Lab Partner:		Section	:
Experimental Data			
Unknown Sample Number			
Table 1. Conductivity and pH of the	Known Solutions		
Known Solutions	Conductivity ()	рН	
1) 0.50 M glucose (C ₆ H ₁₂ O ₆)			
2) 50 % isopropyl alcohol (C ₃ H ₈ O)			
3) 0.50 M acetic acid (HC ₂ H ₃ O ₂)			

Table 2: Tests Results for Glucose and Isopropyl Alcohol Mixed With Several Test Reagents

4) 0.50 M hydrochloric acid (HCl)

5) 0.50 M magnesium sulfate (MgSO₄)

6) 0.50 M aluminum chloride (AlCl₃)

7) Deionized water (H₂O)

Known Solutions	Observations Up	on Mixing
	Chromic acid	Benedict's reagent
1) 0.50 M glucose (C ₆ H ₁₂ O ₆)		
2) 50 % isopropyl alcohol (C ₃ H ₈ O)		

Number and Identity Known	Observations Upon Mixing		
Solutions	0.2 M AgNO ₃	0.2 M Na ₂ CO ₃	3 M NH ₄ OH
3) 0.50 M acetic acid (HC ₂ H ₃ O ₂)			
4) 0.50 M hydrochloric acid (HCl)			
5) 0.50 M magnesium sulfate (MgSO4)			
6) 0.50 M aluminum chloride (AlCl ₃)			

Table 3: Tests Results for Ionic Compounds and Acids Mixed With Several Test Reagents

Analyses Performed on Unknown and Results

Unknown Solution Number _____

Identity of Unknown Solution _____

Experiment 4: Limiting Reactant Data Tables

	Version 4
Name:	Date:
Lab Partner:	Section:

Experimental Data and Calculations

Remember to include units of measure with each entry, and to read and record each measurement to the full precision allowed by the instrument used. Make sure that your work is neat and legible so that you may communicate your results to others such as your instructor. All tables should have a title; add a title where needed.

Table 1. Molar Mass of Reactants and Solid Product

1.	Molar mass of copper(II) chloride	
2.	Molar mass of Al metal	
3.	Molar mass of Cu metal	

Table 2. Amount of Reactants Used in Each Trial and Observations

1.	l. Trial #		Trial 1	Trial 2
2.	Molarity of co	opper(II) chloride solution		
3.	3. Volume of copper(II) chloride solution			
4.	4. Moles of copper(II) chloride			
5. Mass of Al foil		il		
6. Moles of Al				
7. Observation	Observations	Reactants before mixing		
	JUSEI VALIOIIS	Mixture after rection		

(Note: the clear cells should contain your data; the shaded cells will contain calculated values.) *Show your work for each type of calculation for each trial on the back of this sheet.*

Table 3. Amount of Copper Produced in Each Trial

1. Trial #	Trial 1	Trial 2
2. Mass of empty beaker		
3. Mass of filter paper		
4. Mass of beaker + filter paper + solid product, after:		
a. First heating		
b. Second heating		
c. Third heating		
d. Final mass of beaker + filter paper + product, after heating		
5. Mass of solid copper formed in the experiment (actual yield)		

Show your work each type of calculation for each trial:

Name: _____

Tab	le 4		
1.	Trial #	Trial 1	Trial 2
2.	Moles of the product formed from copper(II) chloride		
3.	Moles of the product that formed from Al		
4.	Limiting reactant in the reaction (chemical formula)		
5.	Excess reactant in the reaction (chemical formula)		
6.	Theoretical yield in moles		
7.	Theoretical yield in grams		
8.	Theoretical mass of the unreacted excess reactant		

Show your work each type of calculation for each trial:

Name: _____

Table 5. _____

1.	Trial #	Trial 1	Trial 2
2.	Actual yield (mass of solid copper formed in the experiment)		
3.	Theoretical yield		
4.	Percent yield		

Show your work each type of calculation for each trial:

N	ame:	
	<i>anno</i>	

Post-lab

Show your calculations neatly for *each* trial as outlined by the tables 1-5. Also, write a conclusion (see Appendix 9 How to Write a Scientific Conclusion). Include:

- 1. A balanced chemical equation for the reaction in this experiment. Indicate the states of the reactants and products.
- 2. The limiting reactant and excess reactant in each trial. Back up your decisions with observations and calculations from the experiment.
- 3. Comment on your percent yield. Comment on any unusual or notable results. For example, if you received greater than 100 % yield, that would be an error since matter cannot be created; give some ideas for the source of the error. Likewise, give potential reasons for a very low yield, unexpected color changes, etc.

This page was intentionally left blank

Experiment 5: Observing and Classifying Reactions

	Version 2
Name:	Date:
Lab Partner:	Section:
Purpose	

Experimental Data and Equations

Reactions and No Reactions

1. Deionized water + of zinc granules.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

Molecular Equation (ME):

Ionic Equation (IE):

Net Ionic Equation (NIE):

2. 6 M hydrochloric acid + zinc granules. Perform splint test.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:
ME:	

IE:

NIE:

Instructor's Signature _____

3. 0.2 M ammonium oxalate (the oxalate ion is $C_2O_4^{2-}$) + 0.1 M calcium chloride.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

Instructor's Signature _____

Nam	e:
-----	----

4. Copper metal + 6 M hydrochloric acid. Observe reaction several times for 10 - 15 minutes.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:
ME:	

IE:

NIE:

Instructor's Signature _____

5. Copper metal + 0.5 M silver nitrate. Observe reaction several times for 10 - 15 minutes.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

Instructor's Signature _____

6. 0.1 M barium chloride + 0.1 M sodium sulfate.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:
ME:	

IE:

NIE:

7. 1.0 M sodium hydroxide + hydrochloric acid. Measure temperature and pH before and after.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

Instructor's Signature _____

8. 0.1 M ammonium chloride + 0.1 M copper (II) nitrate.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

A Sequence of Reactions

9. 6.0 M sodium hydroxide dropwise + 0.1 M copper (II) nitrate.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

10. Centrifuge the product from experiment 9. Decant the liquid. Heat the solid.

Observations	
Reactants before combining	After combining and mixing
Reacted?	Reaction type:

ME:

IE:

NIE:

11. 6 M hydrochloric acid + solid produced in experiment 10.

Observations			
Reactants before combining	After combining and mixing		
Reacted?	Reaction type:		

ME:

IE:

NIE:

Experiment 6A: Amount of Active Ingredient in Aspirin

ame:	_ Date: _		
b Partner:	S	ection: _	
Experimental Data and Calculations			
Table 1. Determination of NaOH Concentration. (Part A du	e next Lab.)		
1) HCl concentration written on carboy			
2) NaOH concentration written on carboy			
3) NaOH Solution A concentration (Theoretical value)			
4) NaOH Solution B concentration (Theoretical value)			
	Trial 1*	Trial 2	Trial 3
5) Volume of HCl sample			
6) Moles HCl			
7) Moles of NaOH			
8) Initial buret reading			
9) Final buret reading			
10) Volume NaOH added			
11) Molar concentration of NaOH Solution B (Experimental Value)			
12) Mean molar concentration of NaOH Solution B			
13) Standard deviation			
14) RSD			
15) Relative percent error (%)			

* Show calculations for Trial 1, standard deviation, RSD and relative % error. (Continue on back of sheet if needed.)

1)	Aspirin Brand (and amount of acetylsalicylic acid on label)					
2)	Average molar concentration of NaOH Solution B (from Part A)					
		Trial 1	*	Trial 2	Trial	3
3)	Mass of aspirin tablet					
4)	Mass of pulverized aspirin sample					
5)	Initial buret reading					
6)	Final buret reading					
7)	Volume of NaOH Solution B added					
8)	Moles of NaOH					
9)	Moles of acetylsalicylic acid in sample					
10]	Mass of acetylsalicylic acid in sample					
11]	Amount of acetylsalicylic acid per tablet					
	12) Mean amount of acetylsalicylic acid per tablet					
	13) Standard deviation for acetylsalicylic acid per tablet					
	14) RSD for acetylsalicylic acid per tablet					
	15) Relative percent error (%)					

Data Table 2. Determination of Acetylsalicylic Acid in Aspirin.

*Show all calculations related to Trial 1, standard deviation, RSD, and relative % error.

Report: Include tables 1 and 2, calculations, and written conclusion.

Experiment 7: Analysis of a Gaseous Product

Version	2
Name:	Date:
Lab Partner:	Section:
Experimental Data and Calculations	
Unknown Sample Number	
Table 1. Mass of Unknown Sample Used	

	Trial 1	Trial 2	Trial 3
1) Mass of weighing boat ()			
2) Mass of weighing boat + sample ()			
3) Mass of sample ()			

Table 2: Determination of Temperature and Volume of the Carbon Dioxide Gas Collected

		*Trial 1	Trial 2	Trial 3
1)	Adjusted water level after reaction			
	done (student's signature)			
2)	Temperature of CO ₂ ()			
3)	Volume of CO ₂ ()			
4)	Temperature of CO ₂ (K)			
5)	Volume of CO ₂ (L)			

* Show calculations for Trial 1 here:

Table 3: Determination of the Pressure of the Carbon Dioxide Gas Generated

	*Trial 1	Trial 2	Trial 3
1) Barometric Pressure (inches of Hg)			
2) Vapor Pressure of H ₂ O () (Appendix 5)			
3) Barometric Pressure (atm)			
4) Vapor Pressure of H ₂ O (atm)			
5) Vapor Pressure of CO ₂ (atm)			

* Show calculations for Trial 1 here:

Table 4. Percent by Mass of Calcium Carbonate in Unknown Sample Number

Trial #:	% Calcium Carbonate
1) Trial 1**	
2) Trial 2	
3) Trial 3	

** Show calculations for trial 1, mean, standard deviation and relative percent error on next page.

Table 5. Results Summary

1)	Mean percent by mass of calcium carbonate	
2)	Standard deviation of the percent by mass of calcium carbonate	
3)	Relative percent error of the mean percent by mass of calcium carbonate	

Report: Hand in all sheets of the experimental data, calculations, and write a conclusion.

Experiment 8: Calorimetry

Version 2

Name: _____ Date: _____

Lab Partner: ______ Section: _____

Experimental Data and Calculations

Table 1.	Determination	of the Specific	Heat Capacity of	One Vienna Sausage

1) Mass of the Vienna sausage	
2) Mass of calorimeter and lid	
3) Mass of calorimeter and lid + water	
4) Mass of the water	
5) Ti, initial temperature of water	
6) Tf, final temperature of water	
7) Δ T, change in temp of the water	
8) Heat change of water	
9) Heat change of sausage	
10) Ti, initial temperature of sausage	
11) Tf, final temperature of sausage	
12) ΔT , change in temp of the sausage	
13) Specific heat, Cs, of one sausage	
Calculations:	

Table 2. Estimation of the Heat Needed to Warm an Average Size Adult Person's Hand

1)	Estimated mass of 16 Vienna sausages	
2)	Heat needed to warm 16 Vienna sausages from 15.0 $^{\circ}\mathrm{C}$ to 37.0 $^{\circ}\mathrm{C}$	
Calcu	ulations:	

Table 3			
	NaCl	KCl	CaCl ₂
1) temperature water			
2) temperature of mixture at 30 s			
3) ΔT			
4) visible observations of mixture			
5) type of reaction			

Conclusion:

Table ____.

(**Read over Part C**. Develop your own Table before coming to Lab. Note: you do not need to use all the columns and rows in the table below. Extra provided to not limit your creativity.)

Calculations:				

Report: Hand in Tables 1-4, calculations, and write a conclusion.

This page was intentionally left blank

Experiment 10: Dye Concentration Using UV-Vis Data Tables

	Version 2
Name:	Date:
Lab Partner:	Section:

Part A and B: Preparing Solutions and Measuring UV-Vis Absorbances for the Calibration Curve

Concentration of Allura Red AC Stock Solution _____

Data Table 1. Preparation and Absorbance of Allura Red AC Standards.

Standard #	Volume of Stock Solution Used ()	Concentration of Standards ()	Absorbance
1			
2			
3			
4			
5			

Show your work for calculation of the concentration of standard 1:

Part C: Measuring the Absorbance for the Unknown Drink

Drink Analyzed: _____

Data Table 2. Preparation and Absorbance of Unknown Drink.

Preparation:	Absorbance
1.00 mL unknown drink diluted with DI water to 10.00 mL	

Show your work for calculation of the concentration of Allura Red AC in the Unknown Drink: